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Disappearance of spurious states in analog associative memories
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We show that symmetrio-mixture states, when they exist, are almost never stable in autoassociative
networks with threshold-linear units. Only with a binary coding scheme, we could find a limited region of the
parameter space in which either 2-mixture or 3-mixture states are stable attractors of the dynamics.
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[. INTRODUCTION stance, might arise from the existence of a large number of
spurious states, that obstruct the retrieval of correct patterns
Autoassociative networks are useful models of one of th¢4].

basic operations of cortical network]. “Hebbian” plastic- In their seminal investigation of the Hopfield modél],
ity on recurrent connections, e.g., in the higher level areas ofAmit, Gutfreund, and Sompolinsky found that while sym-
sensory cortex and in the hippocampus, is the crucial ingremetric mixtures of an even number of patterns are unstable,
dient for autoassociation to work, with real neurak Neu-  odd mixtures and the spin-glass phase can be stable, in a
ral network models, although very simplified and abstractcertain region of phase spa¢8]. In the Hopfield model,
allow a Comprehensive ana|ySiS, indicating whether aSSOCiQhough’ neurons are modeled as binary unitsl and corre-
tive memory retrieval can proceed safely, or whether it muspondingly each distribution of activity, in particular each
face dynamical hurdles, such as “spurious” local minima in memory pattern, is a binary vector. Either or both of these
a free-energy landscape. The dynamics of such networks, ifgnects might be essential in producing the additional
the simplest models, is governed by a numbef d.V”f%m"?a' inima in the free-energy landscape. Real neurons behave
attractors, each of which corresponds to a distribution O{:]ery differently from binary units in many respects, a basic

nmeeur:(l)lracltl/l\gtr{{olr.e.i’s Ztg?étdert?, :th'g:}r;e%rse:degtsn: It?ggvé?rhm ne being that their spiking activity, once filtered with a short
Y- Y y sup P ynap 9ime kernel 7], is better approximated by an analog variable.

changes, and the basic operation proceeds by supplying t . : .
network with an external signal that acts as a cue, correlated, reshold-linear units reproduce this graded nature of neural

perhaps only weakly, with a pattern, and which leads througﬁeSpons_e’ yet still f’i”OW for a S|mp!e _and complete statistical
attractor dynamics to the retrieval of the full pattern. mechanics analysis of autoassociative network moffgls
How smoothly can such an operation proceed, and howVith threshold—h_near units, fche memory patterns encoded in
wide are the basins of attraction of tiememory states? the synaptic weights can still be taken to be _bmlary.vectqrs,
Clearly, these issues depend critically on whether other afout can also be taken to be drawn from a distribution with
tractors exist, that could hinder or obstruct retrieval. As aseveral discrete activity values, or from a continuous distri-
crude example, if the cue is correlated with the image of dution [2]. Exponential distributions, in particular, can be
mule, the net may be able to retrieve either a horse or argued to be not far from experimentally observed spike
donkey, if no “mixed” attractor exist. If instead the encoding count distributiong9].
procedure has, unintentionally, created a spurious attractor The question of mixture states in analog nets was first
for the mule itself, the network will likely be stuck in such a addressed in Ref[10], arguing that the multiple local
mixed memory state. In a slightly more complicated modelminima of the spin glass phase are fewer in number in an
endowed with some topographic mapping of visual space, associative net of units with more continuo(sigmoid
horse cue and a donkey cue might be presented simultaransfer function. Later it was found, considering threshold-
neously in neighboring positions. If they are too close inlinear units, that are both realistic and amenable to analytical
visual space and spurious attractors exist, this topographigeatment[2], that the region of stability of the spin-glass
map might retrieve two mules next to each other. Returninghase is severely restricted with such unitd], again in-
to nets without spatial structure and considering for simplic-dicative of a general smoothing of the free-energy landscape
ity only symmetric mixtures of patterns embedded withwith analog variables. Although these analyses provide a
equal strengths, there are obviouglyp—1)/2 2-mixture, good starting point, they are not complete in the sense that
p(p—1)(p—2)/6 3-mixture states, and so on. Do they cor-they did not show what will happen temixture states with
respond to stable attractors, and as such do they influence thesmall (the ones relevant to models of schizophrgnénd

network dynamics? what is the effect of different coding schemes, that is pattern
In addition, connectionist modelers have proposed to dedistributions. Here, we consider instead symmetric
scribe in terms of spurious states certain psychiatric dysfuna-mixtures, withn=2,3,..., and weconsider nonbinary

tions[3]. Speech disorders in schizophrenic patients, for in-memory vectors. Also, from the biological point of view, it is
important to study nets with dilutedhcomplete connectiv-

ity, which are much more realistic descriptions of cortical
*Email address: yasser@sissa.it [12] and hippocampal network4 3], where the probabiliy of
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a recurrent connection between any two units may be of théhis model for networks of pyramidal cells can be found in
order of a few percent. Refs.[2,15], and will not be repeated here.

In this manuscript, we show that symmetric mixture states Subject to the above dynamics, the network evolves to-
give rise to dynamical attractors only in very restricted cir-wards one of a set of attractor states. In a given attractor, the
cumstances, in associative networks of threshold-linear unit®ietwork may still wander among a variety of configurations,
both with full and diluted connectivity. We have analyzed thebut it reaches a stationary probability distribution of being in
validity of this statement in different coding schemes, andany particular configuration. The average of any quantity
did not find any stable mixture state at all, when memoryover such “annealed” probability distribution is denoted by
patterns are not binary. Essentially, we conclude that thig) [whereag ), denotes the average over the quenched dis-
type of spurious states are a pathological feature of the sintribution p(#)]. To analyze such a model one can introduce,
plified binary models considered in the initial studies. as in Ref.[8] the order parameters are

Il. THRESHOLD-LINEAR MODEL N

X= E Ui, (4)
We use a model very similar to that analyzed in R8f. i=1
We consider a fully connected network Nfunits, taken to
model excitatory neurons. The level of activity of unis a 1 N

dynamical variableV;=0, which corresponds to the short X' =\a > nvi—x, 5)
time averaged firing rate of the neuron. Units are connected =1

to each other through symmetric weights. The specific cova-

riance Hebbian learning rule we consider prescribes that the 13 )
synaptic weight between unitsandj be given as Yo=N ;1 Vi), (6)
W=l S paa-a (1) 1o
1 Naz =1 7 7 ’ ylzN ;l <Vi>21 (7)

where »!* represents the activity of unitin patternu. Each
nt" is taken to be a quenched variable, drawn independentl
from a distributionp( ), with the constraints;=0, (»),
=(7°),=a. As in one of the first extensions of the Hopfield

wherex is simply the mean activity of the network, ané,
% the subtracted, or specific, overlap of the current state of
the network with each of the stored patterns. Two further

model [14], we thus allow for the mean activity of the parameters,
atterns to differ from the valua=1/2 of the original model
61, ’ ¥=(Yo~yDTo/T, ®
The model further assumes that the input to uritikes
the form PYy1

P NG ©
(77—

— C v a) 1
h“,; J”Vi+2 S a +b(ﬁ ; VJ)' @) can be defined as a function g§ andy,, and play a par-
ticularly useful role in the analysis in the limit we consider,

where the first term enables the memories encoded in thé—0, when one configuration dominates the annealed aver-
weights to determine the dynamics, the second term allowdde, and/;=yo+O(T). The characteristic noise scale of the
for external signals” to cue the retrieval of one or several System isTo=(1—a)/a [8], and we define the storage load
patterns, and the third term is unrelated to the memory patz=Pp/N. In the limit N—0,T—0, the system is thus char-
terns, but is designed to regulate the activity of the newtorkacterized by the parameteas(mean pattern activity, which
so that at any moment in time ()=;V,;=(1N)3Z;Vi=a. also parametrizes the coding sparserj8$#n the sense that
The activity of each unit is determined by its input through adecreasinga makes the code spargetr (storage loajj g
threshold-linear function (gain), and Ty, (threshold.

Vi=g(hi=Tin)O(hi—T,,), ©) lIl. MEAN-FIELD SOLUTIONS AND THEIR STABILITY

where Ty, is a threshold below which the input elicits no ~ We calculate the free energy using the replica trick, for
output,g is a gain parameter, an@(- - -) is the Heaviside symmetricn-mixture stategwheren over!aps take the same
step function. Units are updated, for example, sequentially ifionzero value, and the rest are zesdicited by external
random order, possibly subject to fast noise. The exact designalss'=- .. =s"=s. These signals can be purely tran-
tails of the updating rule and of the noise are not specifie@ient, so that at steady state 0, but we consider a nonzero
further, here, because they do not affect the steady states 8feady value for the sake of generality. We look for symmet-
the dynamics, and we take the noise leUéb be vanishingly ric states, characterized by nonzetb=---=x"=x. The
small, T—0. Discussions about the biological plausibility of saddle point equations reduce[&)
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X=g’<J Dz(h_Tthr)> , (10)
h>Thr .
77(7'
x":g’< ——1>f Dz(h—Tthr)> , (11
a h>Thr ”
¢=Tog’< f Dz> , (12)
h>Thr
n
yo=(g’)2<f Dz(h_Tthr)2> , (13
h>Thr .
s @Yo aTy g

P aa-g 9T 1o 2gh,
(14

where now the input to each unit can be expresed as
h=b(x)—2 x"+2 %(x”+s")—zT0p (15

and the free energy reads

f=— U Dz(h—Tthr)2>
h>Thr

> (x9)?

N |

7

+

N| -

To
+xb(x)—B(x) + ?lﬂp .

If one defines new parametars- (x+s)/(Top) (the specific
signal-to-noise ratip and w:[b(x)—n%—Tth,]/(Top) (a
sort of uniform field-to-noise ratjo it is easy to show that
the mean-field equations can be reduced to

E (W,0)=(A;+ 6A,)%>— aA3=0, (16)
1
Ez(W,U) = (A1+ 5A2)(m _Az) - aA2=O, (17)
where
n
Al(w,v):Az(W,v)—<f Dz> , (18
Ui
1 r + ( r )
Az(w,v)—nv_l_0 g—nsz w+vg—z 7], (19
Az(w,v) <f+D + : >2> (20
W,v)= zZlWH+v——2 ,
3 a )

with T=3"_, »? and 6=s/x.
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In the equations abov®z= (dz/\s27r)e‘zz’2 and the sub-
script + indicates that the average has to be carried out
only in the range where+ v (I'/a) —z>0. In the following,
we take5=0. Thus symmetrio-mixture attractors exist if
we can find stable solutions of Eqd.6) and(17).

To analyze the stability of the extrema of the free energy,
one has to study the hessian matrix

7" +
E_l)f Dz> (21)

n

7],“0
-1
a

H,= EM,,—<

around the saddle point.

In general, forn-mixture states, there are three types of
eigenvalues as follows:

(1) A nondegenerate eigenvalue, which decides the stabil-
ity against a uniform increase in the amplitude of thpat-
terns that contribute to the thermodynamic stéte., the
“condensed” patterns while the other overlaps remain zero.

Itis (for u#v)
iz iz v +
M:l_< (’7__1 ’7__1)(’7__1) [ Dz> |
a a a ”

(22

(2) An eigenvalue of degeneragy—1, associated with
any direction which tends to change the relative amplitude of
the nonzero overlaps. It imgain foru# v)

+
f Dz) .

s 2 v
e
n

a
(23)

(3) The third eigenvalue, with degeneraey n, measures
the stability against the appearance of additional overlaps. It
is

2
+n

o
T
a

)\3:1_T0<J<+DZ> . (24)

7
IV. DIFFERENT CODING SCHEMES

In order to proceed further, we restrict the analysis to a
number of specific coding schemes, i.e., to different choices
for the distributionp(z). We consider

p(n)=ad(n—1)+(1—a)d(n), binary
g
3

4a
1- ?> 8(m), ternary

—a5 > o
p(n)=396 n—5|+a

+

p(7n)=4ae 27+ (1—2a)d(n), exponential.
(29

For small values of the load (and hence of the quenched
noisep), Eq.(17) describes an hyperbole, whose center de-
pends on the value @. Eq. (16) instead, for small values of
«a, is a closed curve in the quartam& 0, v >0, so that with
an appropriate choice aj the two curves intersect at two
points. Asa grows, the regiorkE;(v,w)>0 shrinks in size,
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FIG. 1. Computer simulation resulN=10000, p=5, and
(a),(b) represeng=1.2, a=0.4; (c),(d) represeng=3, a=0.6. In
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FIG. 2. Storage capacity as a function of sparseness for the
single pattern state$ull line), compared to the region of existence
and stability of 2-mixture(dashed ling and 3-mixture states
(dashed dotted linefor the binary coding scheme, in a fully con-

(a),(c) the initial state was correlated equally with two patterns andnected network with threshold-linear units. Points denoteathe

in (b),(d) with 3.

until at a certain value o&, which depends only oa,n, and

values used in the simulations of Fig. 1.

N\, or both turn out to be negative. This complex behavior of

the coding scheme, it reduces to a point and then disappeaigenvalues will be discussed elsewhere in more detail.
We have investigated not just the existence but also the

stability of solutions for symmetric 2- and 3-mixture states.

V. DILUTED CASE

The solutions behave exactly in the same manner in these

two cases: for small values afboth intersections discussed

above are unstable, in the sense that bothand \, are

We have also extended the analysis to a highly diluted
network[16]. In this case, the number of patterns that can be

negative. This finding is confirmed by computer simulation,stored scales with the numbér of connections each unit
in which one of the overlaps tends to grow, reaching theeceives, rather than with the number of urfitsOne then

corresponding attractor, whereas the other @rethe other

redefines the load parameter @asp/C. The essential dif-

two in the case of 3-mixtures stajgends to zero. Increasing ference introduced by the spaise., diluted connectivity is
the value of the sparsity parameter, one finds different resulihat noise has less of an opportunity to reverberate along

with binary coding and with other types of coding.

Let us consider binary coding first. After a range af

values with only one unstable eigenvalues (©r \,), one

closed loops. In fact the signal, which during retrieval is
simply contributed by the “condensed” patterns, propagates
coherently and proportionally 16, independently of the den-

finds a range where genuinely stable solutions can be foungity of feedback loops in the network. The fluctuations in the

Thus the retrieval of mixture patterns is possible for binaryoverlaps with the undecondensed patterns, whicf-as0

coding, as can be seen in the simulations shown in Fig. 1.
The exact stability region in theo,a) plane differs for 1
2-mixture and 3-mixture states. In both cases, it is delimited 0.8

to the right by the “critical load”«.(a,n), i.e., the value at Q06 | 4 06
which the island withE;(v,w)>0 shrinks to zero, and to the % . 854

. . . . 0.4 A Vs 0.4
left by the loada beyond which no intersection with both 0>> ﬁwﬁﬁ%ﬁ%%*
A1>0 and\,>0 can be found. Fig. 2 illustrates these sta- O 0.2 e @D% 1 o2

bility regions, compared with the critical load for the pure 0
attractor states, as in R¢8].

For ternary and exponential coding, the solutions of the
saddle point equations remain unstable even for very high

-0.2

_D[mﬂlj |
0o m DDD%@D

4 -0.2 |- .

*Q\% +

1 T T x et
0.8 | KRS

0

0051152253

0051152253
9

values of the sparsity parametarAgain, this was verified 9
bY Computel_' S|mqlat|ons. Fig. 3 |II_ustrates t_he different ,S'tu' FIG. 3. The final overlaps with each of four stored patterns,
ation occurring with ternary and binary coding, by Cons'der'averaged over the last 400 updates of the whole network, for left

ing a very low load and a sparsity value for which stable pinary and right(ternary coding, in both cases withi=10000,
solutions for 3-mixture states are easily found in the binary,—g 5, andp=4. Three patterns have initially a nonzero overlap

case. Note that the critical load for 3-mixture states would beyith the activity of the network and retain it, for mogtvalues, in
considerably higher with ternary patterisot shown; the  the binary coding case, while a single pattern is always selected in
fact is that at each position of the intersection, eithgror  the ternary case.
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represent the sole source of noise, propagate coherently VI. CONCLUSION
along feedback loops, giving rise to the amplifying factor  the conclusion is that the existence of stable mixture
1/(1~- ¢) of the fully connected case. For a given ldéided  giates in a restricted region of the parameter space should be
a), d|luted ConneCtIVIty reduces, therefore, the |nﬂuence Ofregarded as almost a pathok)gica' feature' resu'ting from bi-
this “static” noise, and performance is better than in the fU”y nary Coding‘ If one considers mixture states as SpriOUS
connected case with—1=C. In particular, with the ex- states, to be avoided, then one notes that the introduction of
treme dilution, that is, if the conditiorc(Ln(N))—0 is sat- analog variables, a more realistic description of neural activ-
isfied, one can neglect correlations among @mputs to a ity, goes a long way towards disposing of spurious states, just
given unit[16], and the mean field equations becofhé] as it almost eliminated the spin glass phgkH. The remain-
ing region of stability of spurious states is definitely elimi-
nated by nonbinary coding schemes, that further contribute
E (w,v)=(A,+ 6A,)%— aA;=0, (26)  to smooth the free-energy landscape. This result casts doubts
upon, e.g., models of schizophrenia that are based on the
existence of spurious attractors.

1 These results may well have implications in domains out-
E,(w,v)= (— —Az) =0. (27) side computational neuroscience. The smoothness of the
9To(1+9) free-energy landscape is a crucial features of many interact-

ing systems used to map optimization problems, such as the
. ) - ) i traveling salesmafi8] or the graph matching problef9].
_Examining again the stability matrix, we find that the optimization generally fails if the dynamics gets stuck into
mixture solutions, that were present with binary coding andocal minima. Our result indicates that undesired local
large values of, still survive. By the token, the results for minima may be eliminated by a combination of analog vari-
ternary and exponential coding are not affected, in the sensgbles and coding schemes, which may in some cases be ma-
that no stable solutions can be found even in the highly dinipulated while mapping the problem at hand onto a dynami-

luted case. cal system.
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