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Disappearance of spurious states in analog associative memories

Yasser Roudi* and Alessandro Treves
SISSA, Programme in Neuroscience, via Beirut 4, 34014 Trieste, Italy

~Received 20 August 2002; published 17 April 2003!

We show that symmetricn-mixture states, when they exist, are almost never stable in autoassociative
networks with threshold-linear units. Only with a binary coding scheme, we could find a limited region of the
parameter space in which either 2-mixture or 3-mixture states are stable attractors of the dynamics.
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I. INTRODUCTION

Autoassociative networks are useful models of one of
basic operations of cortical networks@1#. ‘‘Hebbian’’ plastic-
ity on recurrent connections, e.g., in the higher level area
sensory cortex and in the hippocampus, is the crucial ing
dient for autoassociation to work, with real neurons@2#. Neu-
ral network models, although very simplified and abstra
allow a comprehensive analysis, indicating whether asso
tive memory retrieval can proceed safely, or whether it m
face dynamical hurdles, such as ‘‘spurious’’ local minima
a free-energy landscape. The dynamics of such network
the simplest models, is governed by a numberp of dynamical
attractors, each of which corresponds to a distribution
neural activity, i.e., a pattern, which represents a long te
memory. Memory is stored by superimposed synaptic we
changes, and the basic operation proceeds by supplying
network with an external signal that acts as a cue, correla
perhaps only weakly, with a pattern, and which leads thro
attractor dynamics to the retrieval of the full pattern.

How smoothly can such an operation proceed, and h
wide are the basins of attraction of thep memory states?
Clearly, these issues depend critically on whether other
tractors exist, that could hinder or obstruct retrieval. As
crude example, if the cue is correlated with the image o
mule, the net may be able to retrieve either a horse o
donkey, if no ‘‘mixed’’ attractor exist. If instead the encodin
procedure has, unintentionally, created a spurious attra
for the mule itself, the network will likely be stuck in such
mixed memory state. In a slightly more complicated mo
endowed with some topographic mapping of visual spac
horse cue and a donkey cue might be presented sim
neously in neighboring positions. If they are too close
visual space and spurious attractors exist, this topogra
map might retrieve two mules next to each other. Return
to nets without spatial structure and considering for simp
ity only symmetric mixtures of patterns embedded w
equal strengths, there are obviouslyp(p21)/2 2-mixture,
p(p21)(p22)/6 3-mixture states, and so on. Do they co
respond to stable attractors, and as such do they influenc
network dynamics?

In addition, connectionist modelers have proposed to
scribe in terms of spurious states certain psychiatric dysfu
tions @3#. Speech disorders in schizophrenic patients, for
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stance, might arise from the existence of a large numbe
spurious states, that obstruct the retrieval of correct patte
@4#.

In their seminal investigation of the Hopfield model@5#,
Amit, Gutfreund, and Sompolinsky found that while sym
metric mixtures of an even number of patterns are unsta
odd mixtures and the spin-glass phase can be stable,
certain region of phase space@6#. In the Hopfield model,
though, neurons are modeled as binary units, and co
spondingly each distribution of activity, in particular eac
memory pattern, is a binary vector. Either or both of the
aspects might be essential in producing the additio
minima in the free-energy landscape. Real neurons beh
very differently from binary units in many respects, a ba
one being that their spiking activity, once filtered with a sh
time kernel@7#, is better approximated by an analog variab
Threshold-linear units reproduce this graded nature of ne
response, yet still allow for a simple and complete statisti
mechanics analysis of autoassociative network models@8#.
With threshold-linear units, the memory patterns encoded
the synaptic weights can still be taken to be binary vecto
but can also be taken to be drawn from a distribution w
several discrete activity values, or from a continuous dis
bution @2#. Exponential distributions, in particular, can b
argued to be not far from experimentally observed sp
count distributions@9#.

The question of mixture states in analog nets was fi
addressed in Ref.@10#, arguing that the multiple loca
minima of the spin glass phase are fewer in number in
associative net of units with more continuous~sigmoid!
transfer function. Later it was found, considering thresho
linear units, that are both realistic and amenable to analyt
treatment@2#, that the region of stability of the spin-glas
phase is severely restricted with such units@11#, again in-
dicative of a general smoothing of the free-energy landsc
with analog variables. Although these analyses provid
good starting point, they are not complete in the sense
they did not show what will happen ton-mixture states with
n small ~the ones relevant to models of schizophrenia!, and
what is the effect of different coding schemes, that is patt
distributions. Here, we consider instead symmet
n-mixtures, with n52,3, . . . , and weconsider nonbinary
memory vectors. Also, from the biological point of view, it
important to study nets with diluted~incomplete! connectiv-
ity, which are much more realistic descriptions of cortic
@12# and hippocampal networks@13#, where the probabiliy of
©2003 The American Physical Society06-1



th

te
ir
ni
he
n
r

th
im

rt
te
v
th

n

ld

t
ow
al
pa
rk

a

o

y
d

fie
s

of

in

to-
the
s,
in

tity
y

dis-
e,

of
er

r,
ver-
e
d
-

t

for
e

n-
o
et-

Y. ROUDI AND A. TREVES PHYSICAL REVIEW E67, 041906 ~2003!
a recurrent connection between any two units may be of
order of a few percent.

In this manuscript, we show that symmetric mixture sta
give rise to dynamical attractors only in very restricted c
cumstances, in associative networks of threshold-linear u
both with full and diluted connectivity. We have analyzed t
validity of this statement in different coding schemes, a
did not find any stable mixture state at all, when memo
patterns are not binary. Essentially, we conclude that
type of spurious states are a pathological feature of the s
plified binary models considered in the initial studies.

II. THRESHOLD-LINEAR MODEL

We use a model very similar to that analyzed in Ref.@8#.
We consider a fully connected network ofN units, taken to
model excitatory neurons. The level of activity of uniti is a
dynamical variableVi>0, which corresponds to the sho
time averaged firing rate of the neuron. Units are connec
to each other through symmetric weights. The specific co
riance Hebbian learning rule we consider prescribes that
synaptic weight between unitsi and j be given as

Ji j 5
1

Na2 (
m51

p

~h i
m2a!~h i

m2a!, ~1!

whereh i
m represents the activity of uniti in patternm. Each

h i
m is taken to be a quenched variable, drawn independe

from a distributionp(h), with the constraintsh>0, ^h&h
5^h2&h5a. As in one of the first extensions of the Hopfie
model @14#, we thus allow for the mean activitya of the
patterns to differ from the valuea51/2 of the original model
@8#.

The model further assumes that the input to uniti takes
the form

hi5(
j Þ i

Ji j
c Vi1(

n
sn

~h i
n2a!

a
1bS 1

N (
j

Vj D , ~2!

where the first term enables the memories encoded in
weights to determine the dynamics, the second term all
for external signalssn to cue the retrieval of one or sever
patterns, and the third term is unrelated to the memory
terns, but is designed to regulate the activity of the newto
so that at any moment in time (1/N)( iVi5(1/N)( iVi

25a.
The activity of each unit is determined by its input through
threshold-linear function

Vi5g~hi2Tthr!Q~hi2Tthr!, ~3!

whereTthr is a threshold below which the input elicits n
output,g is a gain parameter, andQ(•••) is the Heaviside
step function. Units are updated, for example, sequentiall
random order, possibly subject to fast noise. The exact
tails of the updating rule and of the noise are not speci
further, here, because they do not affect the steady state
the dynamics, and we take the noise levelT to be vanishingly
small,T→0. Discussions about the biological plausibility
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this model for networks of pyramidal cells can be found
Refs.@2,15#, and will not be repeated here.

Subject to the above dynamics, the network evolves
wards one of a set of attractor states. In a given attractor,
network may still wander among a variety of configuration
but it reaches a stationary probability distribution of being
any particular configuration. The average of any quan
over such ‘‘annealed’’ probability distribution is denoted b
^ & @whereaŝ &h denotes the average over the quenched
tribution p(h)]. To analyze such a model one can introduc
as in Ref.@8# the order parameters are

x5(
i 51

N

v i , ~4!

xs5
1

Na (
i 51

N

h i
sv i2x, ~5!

y05
1

N (
i 51

N

^Vi
2&, ~6!

y15
1

N (
i 51

N

^Vi&
2, ~7!

wherex is simply the mean activity of the network, andxs,
is the subtracted, or specific, overlap of the current state
the network with each of the stored patterns. Two furth
parameters,

c5~y02y1!T0 /T, ~8!

r5
py1

@N~12c!2#
, ~9!

can be defined as a function ofy0 and y1, and play a par-
ticularly useful role in the analysis in the limit we conside
T→0, when one configuration dominates the annealed a
age, andy1.y01O(T). The characteristic noise scale of th
system isT0[(12a)/a @8#, and we define the storage loa
a[p/N. In the limit N→0,T→0, the system is thus char
acterized by the parametersa ~mean pattern activity, which
also parametrizes the coding sparseness@8# in the sense tha
decreasinga makes the code sparser!, a ~storage load!, g
~gain!, andTthr ~threshold!.

III. MEAN-FIELD SOLUTIONS AND THEIR STABILITY

We calculate the free energy using the replica trick,
symmetricn-mixture states~wheren overlaps take the sam
nonzero value, and the rest are zero! elicited by external
signalss15•••5sn5s. These signals can be purely tra
sient, so that at steady states50, but we consider a nonzer
steady value for the sake of generality. We look for symm
ric states, characterized by nonzerox̂15•••5 x̂n5 x̂. The
saddle point equations reduce to@8#
6-2
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x5g8KE
h.Tthr

Dz~h2Tthr!L
h

, ~10!

xs5g8K S hs

a
21D E

h.Tthr
Dz~h2Tthr!L

h

, ~11!

c5T0g8K E
h.Tthr

DzL
h

, ~12!

y05~g8!2K E
h.Tthr

Dz~h2Tthr!
2L

h

, ~13!

r25
ay0

~12c!2
, h25

aT0

2~12c!
, g85

g

122gh2
,

~14!

where now the input to each unit can be expresed as

h5b~x!2(
s

xs1(
s

hs

a
~xs1ss!2zT0r ~15!

and the free energy reads

f 52
g8

2 K E
h.Tthr

Dz~h2Tthr!
2L

h

1
1

2 (
s

~xs!2

1xb~x!2B~x!1
T0

2
cr2.

If one defines new parametersv5( x̂1s)/(T0r) ~the specific
signal-to-noise ratio! and w5@b(x)2nx̂2Tthr#/(T0r) ~a
sort of uniform field-to-noise ratio!, it is easy to show tha
the mean-field equations can be reduced to

E1~w,v !5~A11dA2!22aA350, ~16!

E2~w,v !5~A11dA2!S 1

gT0~11d!
2A2D2aA250, ~17!

where

A1~w,v !5A2~w,v !2 K E1

DzL
h

, ~18!

A2~w,v !5
1

nvT0
K S G

a
2nD E1

DzS w1v
G

a
2zD L

h

, ~19!

A3~w,v !5 K E1

DzS w1v
G

a
2zD 2L

h

, ~20!

with G5(s51
n hs andd5s/ x̂.
04190
In the equations above,Dz5(dz/A2p)e2z2/2 and the sub-
script 1 indicates that thez average has to be carried o
only in the range wherew1v(G/a)2z.0. In the following,
we taked50. Thus symmetricn-mixture attractors exist if
we can find stable solutions of Eqs.~16! and ~17!.

To analyze the stability of the extrema of the free ener
one has to study the hessian matrix

Hmn5dmn2 K S hm

a
21D S hn

a
21D E1

DzL
h

~21!

around the saddle point.
In general, forn-mixture states, there are three types

eigenvalues as follows:
~1! A nondegenerate eigenvalue, which decides the sta

ity against a uniform increase in the amplitude of then pat-
terns that contribute to the thermodynamic state~i.e., the
‘‘condensed’’ patterns!, while the other overlaps remain zer
It is ~for mÞn)

l1512 K F S hm

a
21D 2

1nS hm

a
21D S hn

a
21D G E1

DzL
h

.

~22!

~2! An eigenvalue of degeneracyn21, associated with
any direction which tends to change the relative amplitude
the nonzero overlaps. It is~again formÞn)

l2512 K F S hm

a
21D 2

2S hm

a
21D S hn

a
21D G E1

DzL
h

.

~23!

~3! The third eigenvalue, with degeneracyp2n, measures
the stability against the appearance of additional overlap
is

l3512T0K E1

DzL
h

. ~24!

IV. DIFFERENT CODING SCHEMES

In order to proceed further, we restrict the analysis to
number of specific coding schemes, i.e., to different choi
for the distributionp(h). We consider

p~h!5ad~h21!1~12a!d~h!, binary

p~h!5
a

3
dS h2

3

2D1adS h2
1

2D
1S 12

4a

3 D d~h!, ternary

p~h!54ae22h1~122a!d~h!, exponential.
~25!

For small values of the loada ~and hence of the quenche
noiser), Eq. ~17! describes an hyperbole, whose center d
pends on the value ofg. Eq. ~16! instead, for small values o
a, is a closed curve in the quartantw,0, v.0, so that with
an appropriate choice ofg the two curves intersect at tw
points. Asa grows, the regionE1(v,w).0 shrinks in size,
6-3
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until at a certain value ofa, which depends only ona,n, and
the coding scheme, it reduces to a point and then disapp

We have investigated not just the existence but also
stability of solutions for symmetric 2- and 3-mixture state
The solutions behave exactly in the same manner in th
two cases: for small values ofa both intersections discusse
above are unstable, in the sense that bothl1 and l2 are
negative. This finding is confirmed by computer simulatio
in which one of the overlaps tends to grow, reaching
corresponding attractor, whereas the other one~or the other
two in the case of 3-mixtures states! tends to zero. Increasin
the value of the sparsity parameter, one finds different res
with binary coding and with other types of coding.

Let us consider binary coding first. After a range ofa
values with only one unstable eigenvalues (l1 or l2), one
finds a range where genuinely stable solutions can be fo
Thus the retrieval of mixture patterns is possible for bina
coding, as can be seen in the simulations shown in Fig.

The exact stability region in the (a,a) plane differs for
2-mixture and 3-mixture states. In both cases, it is delimi
to the right by the ‘‘critical load’’ac(a,n), i.e., the value at
which the island withE1(v,w).0 shrinks to zero, and to th
left by the loada beyond which no intersection with bot
l1.0 andl2.0 can be found. Fig. 2 illustrates these s
bility regions, compared with the critical load for the pu
attractor states, as in Ref.@8#.

For ternary and exponential coding, the solutions of
saddle point equations remain unstable even for very h
values of the sparsity parametera. Again, this was verified
by computer simulations. Fig. 3 illustrates the different si
ation occurring with ternary and binary coding, by consid
ing a very low load and a sparsity value for which stab
solutions for 3-mixture states are easily found in the bin
case. Note that the critical load for 3-mixture states would
considerably higher with ternary patterns~not shown!; the
fact is that at each position of the intersection, eitherl1 or

FIG. 1. Computer simulation resultN510 000, p55, and
~a!,~b! representg51.2, a50.4; ~c!,~d! representg53, a50.6. In
~a!,~c! the initial state was correlated equally with two patterns a
in ~b!,~d! with 3.
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l2 or both turn out to be negative. This complex behavior
eigenvalues will be discussed elsewhere in more detail.

V. DILUTED CASE

We have also extended the analysis to a highly dilu
network@16#. In this case, the number of patterns that can
stored scales with the numberC of connections each uni
receives, rather than with the number of unitsN. One then
redefines the load parameter asa[p/C. The essential dif-
ference introduced by the sparse~i.e., diluted! connectivity is
that noise has less of an opportunity to reverberate al
closed loops. In fact the signal, which during retrieval
simply contributed by the ‘‘condensed’’ patterns, propaga
coherently and proportionally toC, independently of the den
sity of feedback loops in the network. The fluctuations in t
overlaps with the undecondensed patterns, which asT→0

d

FIG. 2. Storage capacity as a function of sparseness for
single pattern states~full line!, compared to the region of existenc
and stability of 2-mixture ~dashed line! and 3-mixture states
~dashed dotted line!, for the binary coding scheme, in a fully con
nected network with threshold-linear units. Points denote thea,a
values used in the simulations of Fig. 1.

FIG. 3. The final overlaps with each of four stored patter
averaged over the last 400 updates of the whole network, for
~binary! and right ~ternary! coding, in both cases withN510000,
a50.5, andp54. Three patterns have initially a nonzero overl
with the activity of the network and retain it, for mostg values, in
the binary coding case, while a single pattern is always selecte
the ternary case.
6-4
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represent the sole source of noise, propagate cohere
along feedback loops, giving rise to the amplifying fact
1/(12c) of the fully connected case. For a given load~fixed
a), diluted connectivity reduces, therefore, the influence
this ‘‘static’’ noise, and performance is better than in the fu
connected case withN215C. In particular, with the ex-
treme dilution, that is, if the condition (c/Ln(N))→0 is sat-
isfied, one can neglect correlations among theC inputs to a
given unit @16#, and the mean field equations become@17#

E1~w,v !5~A21dA2!22aA350, ~26!

E2~w,v !5S 1

gT0~11d!
2A2D50. ~27!

Examining again the stability matrix, we find that th
mixture solutions, that were present with binary coding a
large values ofa, still survive. By the token, the results fo
ternary and exponential coding are not affected, in the se
that no stable solutions can be found even in the highly
luted case.
A
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VI. CONCLUSION

The conclusion is that the existence of stable mixtu
states in a restricted region of the parameter space shou
regarded as almost a pathological feature, resulting from
nary coding. If one considers mixture states as spuri
states, to be avoided, then one notes that the introductio
analog variables, a more realistic description of neural ac
ity, goes a long way towards disposing of spurious states,
as it almost eliminated the spin glass phase@11#. The remain-
ing region of stability of spurious states is definitely elim
nated by nonbinary coding schemes, that further contrib
to smooth the free-energy landscape. This result casts do
upon, e.g., models of schizophrenia that are based on
existence of spurious attractors.

These results may well have implications in domains o
side computational neuroscience. The smoothness of
free-energy landscape is a crucial features of many inter
ing systems used to map optimization problems, such as
traveling salesman@18# or the graph matching problem@19#.
Optimization generally fails if the dynamics gets stuck in
local minima. Our result indicates that undesired loc
minima may be eliminated by a combination of analog va
ables and coding schemes, which may in some cases be
nipulated while mapping the problem at hand onto a dyna
cal system.
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